

9.	If Zeba was younger by 5 years than what she really is, then the square of her age (in years) would have been 11 more than five times her actual age. What is her age now?							
	A	14 years	B	16 years	C	10 years	D	24 years
10.	The difference of square of two numbers is 45 and square of the smaller is 4 times the larger number, then the two numbers are							
	A	4,-6	B	$4, \pm 6$	C	9, -6	D	$9, \pm 6$
11.	If a 2 -digit number is such that the product of its digits is 18 . When 63 is subtracted from the number, the digits interchange their places, then the number is							
	A	102	B	192	C	92	D	98
12.	The power P in megawatt (MW), produced between mid-night and noon by a nuclear power plant is given by $P=3 x^{2}-42 x+349$, where x is the hours of the day. At what time is the power 250 MW?							
	A	3 a.m., 11 a.m.	B	2 a.m., 11 a.m.	C	2 a.m., 6 a.m.	D	5 a.m., 6 a.m.
13.	The quadratic equation $2 x^{2}-\sqrt{5} x+1=0$ has							
	A	two distinct real roots	B	two equal real roots	C	no real roots	D	more than two real roots
14.	The value(s) of k for which the equation $x^{2}+5 k x+16=0$ has real and equal roots							
	A	± 12	B	$\frac{-6}{5}$	C	$\frac{2}{3}, \frac{-2}{3}$	D	$\frac{8}{5}, \frac{-8}{5}$
15.	At t minutes past 2 p.m. the time needed by the minutes hand of a clock to show 3 p.m. was found to be 3 minutes less than $\frac{t^{2}}{4}$ minutes, then the value of t is							
	A	14	B	104	C	19	D	30
	DIRECTION: In the following questions, a statement of assertion (A) is followed by statement of Reason (R). Choose the correct option							
	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.							

16.	Assertion(A): If one root of the quadratic equation $6 x^{2}-x-k=0$ is $\frac{2}{3}$, then the value of k is 2 . Reason (R) : The quadratic equation $a x^{2}+b x+c=0, a \neq 0$ has almost two roots.							
17.	Assertion(A): The equation $x^{2}+3 x+1=(x-2)^{2}$ is a quadratic equation. Reason (R): Any equation of the form $a x^{2}+b x+c=0, a \neq 0$ is called a quadratic equation.							
18.	Assertion(A): The roots of the quadratic equation $x^{2}+2 x+2=0$ are not real roots. Reason(R): If discriminant $D=b^{2}-4 a c<0$ then the roots of the quadratic equation $a x^{2}+b x+c=0$ are not real.							
19.	Assertion(A): If roots of the equation $x^{2}-b x+c=0$ are two consecutive integers, then $b^{2}-4 c=1$. Reason(R): If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are odd integer then the roots of the equation $4 a b c x^{2}+\left(b^{2}-4 a c\right) x-b=0$ are real and distinct.							
20.	Assertion(A): Values of x are $\frac{-a}{2}, a$ for a quadratic equation $2 x^{2}+a x-a^{2}=0$. Reason(R): For quadratic equation $a x^{2}+b x+c=0, x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.							
	Answers							
	1	D	2	A	3	C	4	B
	5	C	6	D	7	D	8	C
	9	A	10	D	11	C	12	A
	13	C	14	D	15	A	16	b
	17	d	18	a	19	b	20	d

